
Abacus Polytechnic College Haripur, WWW.ABACUS.EDU.PK

Page | 1 WWW.ABACUS.EDU.PK, PH: 0995-611328, cell: 0331-6611328

History of C

The milestones in C's development as a language are listed below:

Initially developed by Dennis Ritchie between 1969 and 1973 at AT&T Bell Labs.

 UNIX developed c. 1969 -- DEC PDP-7 Assembly Language

 BCPL -- a user friendly OS providing powerful development tools

developed from BCPL. Assembler tedious long and error prone.

 A new language ``B'' a second attempt. c. 1970.

 A totally new language ``C'' a successor to ``B''. c. 1971

 By 1973 UNIX OS almost totally written in ``C''.

C is a general-purpose language which has been closely associated with the UNIX operating

system for which it was developed - since the system and most of the programs that run it are

written in C.

Many of the important ideas of C stem from the language BCPL, developed by Martin

Richards. The influence of BCPL on C proceeded indirectly through the language B, which

was written by Ken Thompson in 1970 at Bell Labs, for the first UNIX system on a DEC

PDP-7. BCPL and B are "type less" languages whereas C provides a variety of data types.

In 1972 Dennis Ritchie at Bell Labs writes C and in 1978 the publication of The C

Programming Language by Kernighan & Ritchie caused a revolution in the computing world.

In 1983, the American National Standards Institute (ANSI) established a committee to

provide a modern, comprehensive definition of C. The resulting definition, the ANSI

standard, or "ANSI C", was completed late 1988.

Characteristics of C

We briefly list some of C's characteristics that define the language and also have lead to its

popularity as a programming language. Naturally we will be studying many of these aspects

throughout the course.

 Small size

 Extensive use of function calls

 Loose typing -- unlike PASCAL

 Structured language

 Low level (BitWise) programming readily available

 Pointer implementation - extensive use of pointers for memory,

array, structures and functions.

C has now become a widely used professional language for various reasons.

Abacus Polytechnic College Haripur, WWW.ABACUS.EDU.PK

Page | 2 WWW.ABACUS.EDU.PK, PH: 0995-611328, cell: 0331-6611328

 It has high-level constructs.

 It can handle low-level activities.

 It produces efficient programs.

 It can be compiled on a variety of computers.

 Multipurpose and multiplatform

Its main drawback is that it has poor error detection which can make it off putting to the

beginner. However diligence in this matter can pay off handsomely since having learned the

rules of C we can break them. Not many languages allow this. This if done properly and

carefully leads to the power of C programming.

Uses of C Language:

C was initially used for system development work, in particular the programs that make-up

the operating system. Why use C? Mainly because it produces code that runs nearly as fast as

code written in assembly language. Some examples of the use of C might be:

 Operating Systems

 Language Compilers

 Assemblers

 Text Editors

 Print Spoolers

 Network Drivers

 Modern Programs

 Data Bases

 Language Interpreters

 Utilities

In recent years C has been used as a general-purpose language because of its popularity with

programmers. It is not the world's easiest language to learn and you will certainly benefit if

you are not learning C as your first programming language! C is trendy (I nearly said sexy) -

many well established programmers are switching to C for all sorts of reasons, but mainly

because of the portability that writing standard C programs can offer.

Why use C?

C has been used successfully for every type of programming problem imaginable from

operating systems to spreadsheets to expert systems - and efficient compilers are available

for machines ranging in power from the Apple Macintosh to the Cray supercomputers. The

largest measure of C's success seems to be based on purely practical considerations:

 the portability of the compiler;

 the standard library concept;

 a powerful and varied repertoire of operators;

 an elegant syntax;

 ready access to the hardware when needed;

 and the ease with which applications can be optimised by hand-coding isolated

procedures

Abacus Polytechnic College Haripur, WWW.ABACUS.EDU.PK

Page | 3 WWW.ABACUS.EDU.PK, PH: 0995-611328, cell: 0331-6611328

C is often called a "Middle Level" programming language. This is not a reflection on its lack

of programming power but more a reflection on its capability to access the system's low level

functions. Most high-level languages (e.g. Fortran) provides everything the programmer

might want to do already built into the language. A low level language (e.g. assembler)

provides nothing other than access to the machines basic instruction set. A middle level

language, such as C, probably doesn't supply all the constructs found in high-languages - but

it provides you with all the building blocks that you will need to produce the results you

want!

Difference between C & C++:

1. C follows the procedural programming paradigm while C++ is a multi-paradigm

language (procedural as well as object oriented)

In case of C, importance is given to the steps or procedure of the program while C++ focuses

on the data rather than the process.

 Also, it is easier to implement/edit the code in case of C++ for the same reason.

2. In case of C, the data is not secured while the data is secured(hidden) in C++

This difference is due to specific OOP features like Data Hiding which are not present in C.

3. C is a low-level language while C++ is a middle-level language (Relatively, Please see

the discussion at the end of the post)

C is regarded as a low-level language(difficult interpretation & less user friendly) while C++

has features of both low-level(concentration on whats going on in the machine hardware) &

high-level languages(concentration on the program itself) & hence is regarded as a middle-

level language.

4. C uses the top-down approach while C++ uses the bottom-up approach

In case of C, the program is formulated step by step, each step is processed into detail while

in C++, the base elements are first formulated which then are linked together to give rise to

larger systems.

5. C is function-driven while C++ is object-driven

Functions are the building blocks of a C program while objects are building blocks of a C++

program.

6. C++ supports function overloading while C does not

Overloading means two functions having the same name in the same program. This can be

done only in C++ with the help of Polymorphism(an OOP feature)

Abacus Polytechnic College Haripur, WWW.ABACUS.EDU.PK

Page | 4 WWW.ABACUS.EDU.PK, PH: 0995-611328, cell: 0331-6611328

7. We can use functions inside structures in C++ but not in C.

In case of C++, functions can be used inside a structure while structures cannot contain

functions in C.

8. The NAMESPACE feature in C++ is absent in case of C

C++ uses NAMESPACE which avoid name collisions. For instance, two students enrolled in

the same university cannot have the same roll number while two students in different

universities might have the same roll number. The universities are two different namespace

& hence contain the same roll number(identifier) but the same university(one namespace)

cannot have two students with the same roll number(identifier)

9. The standard input & output functions differ in the two languages

C uses scanf & printf while C++ uses cin>> & cout<< as their respective input & output

functions

10. C++ allows the use of reference variables while C does not

Reference variables allow two variable names to point to the same memory location. We

cannot use these variables in C programming.

C Program Structure

A C program basically has the following form:

 Preprocessor Commands

 Type definitions

 Function prototypes -- declare function types and variables

passed to function.

 Variables

 Functions

We must have a main() function.

A function has the form:

type function_name (parameters)

 {

 local variables

 C Statements

 }

Abacus Polytechnic College Haripur, WWW.ABACUS.EDU.PK

Page | 5 WWW.ABACUS.EDU.PK, PH: 0995-611328, cell: 0331-6611328

If the type definition is omitted C assumes that function returns an integer type. NOTE: This

can be a source of problems in a program.

So returning to our first C program:

 /* Sample program */

 main()

 {

 printf(``I Like C n'');

 exit (0);

 }

NOTE:

 C requires a semicolon at the end of every statement.
 printf is a standard C function -- called from main.

 \n signifies newline. Formatted output -- more later.
 exit() is also a standard function that causes the program to terminate.

Strictly speaking it is not needed here as it is the last line of main() and the

program will terminate anyway.

Let us look at another printing statement:

printf(``. n.1 n..2 n...3 n'');

The output of this would be:

 .

 .1

 ..2

 ...3

Variables:

Variable is used to store some value in computer memory; its value can be changed in a

program. On the other hand the value of constant cant b changed.

C has the following simple data types:

Abacus Polytechnic College Haripur, WWW.ABACUS.EDU.PK

Page | 6 WWW.ABACUS.EDU.PK, PH: 0995-611328, cell: 0331-6611328

Rules to Declare Variables

1) A Variable name consists of any combination of alphabets, digits and underscores. Some

compiler allows variable names whole length could be up to 247 characters. Still it would be

safer to stick to the rule of 31 characters. Please avoid creating long variable name as it adds

to your typing effort.

 2) The first character of the variable name must either be alphabet or underscore. It should

not start with the digit.

 3) No commas and blanks are allowed in the variable name.

 4) No special symbols other than underscore are allowed in the variable name.

 We need to declare the type of the variable name before making use of that name in the

program. Type declaration can be done as follows:

 To declare a variable as integer, follow the below syntax:

 int variable_name;

 Here int is the type of the variable named variable_name. „int‟ denotes integer type.

 Following are the examples of type declaration statements:

 E.g.: int p, n;

 float r;

Constants

ANSI C allows you to declare constants. When you declare a constant it is a bit like a

variable declaration except the value cannot be changed.

The const keyword is to declare a constant, as shown below:

int const a = 1;

const int a =2;

Abacus Polytechnic College Haripur, WWW.ABACUS.EDU.PK

Page | 7 WWW.ABACUS.EDU.PK, PH: 0995-611328, cell: 0331-6611328

Note:

You can declare the const before or after the type. Choose one an stick to it.

 It is usual to initialise a const with a value as it cannot get a

value any other way.

The preprocessor #define is another more flexible method to define constants in a program.

Types of Constants:

1. Numeric Constant

a. Integer

b. Float

c. Exponential

2. Non Numeric Constant

a. Character

b. String

Printing Out and Inputting Variables

C uses formatted output. The printf function has a special formatting character (%) -- a

character following this defines a certain format for a variable:

 %c -- characters

 %d -- integers

 %f -- floats

 e.g. printf(``%c %d %f'',ch,i,x);

NOTE: Format statement enclosed in ``...'', variables follow after. Make sure order of format

and variable data types match up.

scanf() is the function for inputting values to a data structure: Its format is similar to printf:

 i.e. scanf(``%c %d %f'',&ch,&i,&x);

Arithmetic Operations

As well as the standard arithmetic operators (+ - * /) found in most languages, C provides

some more operators. There are some notable differences with other languages, such as

Pascal.

Assignment is = i.e. i = 4; ch = `y';

Increment ++, Decrement -- which are more efficient than their long hand equivalents, for

example:-- x++ is faster than x=x+1.

Abacus Polytechnic College Haripur, WWW.ABACUS.EDU.PK

Page | 8 WWW.ABACUS.EDU.PK, PH: 0995-611328, cell: 0331-6611328

The ++ and -- operators can be either in post-fixed or pre-fixed. With pre-fixed the value is

computed before the expression is evaluated whereas with post-fixed the value is computed

after the expression is evaluated.

In the example below, ++z is pre-fixed and the w-- is post-fixed:

 int x,y,w;

 main()

 {

 x=((++z)-(w--)) % 100;

 }

This would be equivalent to:

 int x,y,w;

 main()

 {

 z++;

 x=(z-w) % 100;

 w--;

 }

The % (modulus) operator only works with integers.

Division / is for both integer and float division. So be careful.

The answer to: x = 3 / 2 is 1 even if x is declared a float!!

RULE: If both arguments of / are integer then do integer division.

So make sure you do this. The correct (for division) answer to the above is x = 3.0 / 2 or x= 3 / 2.0 or (better) x

= 3.0 / 2.0.

There is also a convenient shorthand way to express computations in C.

It is very common to have expressions like: i = i + 3 or x = x*(y + 2)

This can written in C (generally) in a shorthand form like this:

which is equivalent to (but more efficient than):

So we can rewrite i = i + 3 as i += 3

Abacus Polytechnic College Haripur, WWW.ABACUS.EDU.PK

Page | 9 WWW.ABACUS.EDU.PK, PH: 0995-611328, cell: 0331-6611328

and x = x*(y + 2) as x *= y + 2.

NOTE: that x *= y + 2 means x = x*(y + 2) and NOT x = x*y + 2.

Comparison Operators

To test for equality is = =

A warning: Beware of using ``='' instead of ``= ='', such as writing accidentally

 if (i = j)

This is a perfectly LEGAL C statement (syntactically speaking) which copies the value in "j"

into "i", and delivers this value, which will then be interpreted as TRUE if j is non-zero. This

is called assignment by value -- a key feature of C.

Not equals is: !=

Other operators < (less than) , > (grater than), <= (less than or equals), >= (greater than or

equals) are as usual.

Logical Operators

Logical operators are usually used with conditional statements.

The two basic logical operators are:

&& for logical AND, || for logical OR.

Beware & and | have a different meaning for bitwise AND and OR.

Order of Precedence

It is necessary to be careful of the meaning of such expressions as a + b * c

We may want the effect as either

 (a + b) * c

or

 a + (b * c)

All operators have a priority, and high priority operators are evaluated before lower priority

ones. Operators of the same priority are evaluated from left to right, so that

 a - b - c

is evaluated as

Abacus Polytechnic College Haripur, WWW.ABACUS.EDU.PK

Page | 10 WWW.ABACUS.EDU.PK, PH: 0995-611328, cell: 0331-6611328

 (a - b) - c

as you would expect.

From high priority to low priority the order for all C operators is:

 () [] -> .

 ! - * & sizeof cast ++ -

 (these are right->left)

 * / %

 + -

 < <= >= >

 == !=

 &

 |

 &&

 ||

 ?: (right->left)

 = += -= (right->left)

 , (comma)

Thus

 a < 10 && 2 * b < c

is interpreted as

 (a < 10) && ((2 * b) < c)

and

 a = b = spokes / spokes_per_wheel + spares;

as

 a =(b =(spokes / spokes_per_wheel)+ spares);

The ? operator

The ? (ternary condition) operator is a more efficient form for expressing simple if

statements. It has the following form:

 expression1 ? expression2: expression3

It simply states:

if expression1 then expression2 else expression3

For example to assign the maximum of a and b to z:

 z = (a>b)? a : b;

Abacus Polytechnic College Haripur, WWW.ABACUS.EDU.PK

Page | 11 WWW.ABACUS.EDU.PK, PH: 0995-611328, cell: 0331-6611328

which is the same as:

 if (a>b)

 z = a;

 else

 z = b;

Expressions:

Combination of operators and operands is called expressions:

 X=a+b-d/5

There are 4 types of expressions in C/C++:

Arithmetic:

In which arithmetic operators are used

 X=a+b-d/5

Relational/Conditional

In which relational operators are used

If (a>b) or if(marks<=70)

Logical:

In which logical operators are used

If (marks>=70 && marks<=80)

Incremental/Decremenatal

In which increment and decrement operators are used

A++

a--

Basic Data Types and Operators

The type of a variable determines what kinds of values it may take on. An operator computes

new values out of old ones. An expression consists of variables, constants, and operators

combined to perform some useful computation.

Types

Abacus Polytechnic College Haripur, WWW.ABACUS.EDU.PK

Page | 12 WWW.ABACUS.EDU.PK, PH: 0995-611328, cell: 0331-6611328

There are only a few basic data types in C. The first ones we'll be encountering and using are:

 char a character

 int an integer, in the range -32,767 to 32,767

 long int a larger integer (up to +-2,147,483,647)

 float a floating-point number

 double a floating-point number, with more precision and perhaps greater range than
float

The ranges listed above for types int and long int are the guaranteed minimum ranges. On

some systems, either of these types (or, indeed, any C type) may be able to hold larger

values, but a program that depends on extended ranges will not be as portable.

(From the ranges listed above, we can determine that type int must be at least 16 bits, and that

type long int must be at least 32 bits. But neither of these sizes is exact; many systens have 32-

bit ints, and some systems have 64-bit long ints.)

String

A string is represented in C as a sequence or array of characters. (We'll have more to say

about arrays in general, and strings in particular, later.) A string constant is a sequence of

zero or more characters enclosed in double quotes: "apple", "hello, world", "this is a test".

Escape Sequences

 \n a ``newline'' character

 \a beep

 \xdd graphic character

 \b a backspace

 \r a carriage return (without a line feed)

 \' a single quote (e.g. in a character constant)

 \" a double quote (e.g. in a string constant)

 \\ a single backslash

For example, "he said \"hi\"" is a string constant which contains two double quotes, and '\'' is a

character constant consisting of a (single) single quote. Notice once again that the character

constant 'A' is very different from the string constant "A".

Declarations

Informally, a variable (also called an object) is a place you can store a value. So that you can

refer to it unambiguously, a variable needs a name. You can think of the variables in your

program as a set of boxes or cubbyholes, each with a label giving its name; you might

imagine that storing a value ``in'' a variable consists of writing the value on a slip of paper

and placing it in the cubbyhole.

A declaration tells the compiler the name and type of a variable you'll be using in your

program. In its simplest form, a declaration consists of the type, the name of the variable, and

a terminating semicolon:

Abacus Polytechnic College Haripur, WWW.ABACUS.EDU.PK

Page | 13 WWW.ABACUS.EDU.PK, PH: 0995-611328, cell: 0331-6611328

 char c;

 int i;

 float f;

You can also declare several variables of the same type in one declaration, separating them

with commas:

 int i1, i2;

Arithmetic Operators

The basic operators for performing arithmetic are the same in many computer languages:

 + addition

 - subtraction

 * multiplication

 / division

 % modulus (remainder)

The - operator can be used in two ways: to subtract two numbers (as in a - b), or to negate one

number (as in -a + b or a + -b).

When applied to integers, the division operator / discards any remainder, so 1 / 2 is 0 and 7 / 4

is 1. But when either operand is a floating-point quantity (type float or double), the division

operator yields a floating-point result, with a potentially nonzero fractional part. So 1 / 2.0 is

0.5, and 7.0 / 4.0 is 1.75.

The modulus operator % gives you the remainder when two integers are divided: 1 % 2 is 1; 7

% 4 is 3. (The modulus operator can only be applied to integers.)

An additional arithmetic operation you might be wondering about is exponentiation. Some

languages have an exponentiation operator (typically ^ or **), but C doesn't. (To square or

cube a number, just multiply it by itself.)

Multiplication, division, and modulus all have higher precedence than addition and

subtraction. The term ``precedence'' refers to how ``tightly'' operators bind to their operands

(that is, to the things they operate on). In mathematics, multiplication has higher precedence

than addition, so 1 + 2 * 3 is 7, not 9. In other words, 1 + 2 * 3 is equivalent to 1 + (2 * 3). C is

the same way.

Assignment Operators

[This section corresponds to K&R Sec. 2.10]

The assignment operator = assigns a value to a variable. For example,

 x = 1

sets x to 1, and
 a = b

sets a to whatever b's value is. The expression
 i = i + 1

Abacus Polytechnic College Haripur, WWW.ABACUS.EDU.PK

Page | 14 WWW.ABACUS.EDU.PK, PH: 0995-611328, cell: 0331-6611328

is, as we've mentioned elsewhere, the standard programming idiom for increasing a variable's

value by 1: this expression takes i's old value, adds 1 to it, and stores it back into i.

Operator

Type

Operator Description Associativity Precedence

Level

Parentheses,

Braces

()

[]

Parentheses

Brackets
Left to right 1

Unary

++ --

+ -

! ~

(type)

&

Size of

Unary pre increment / pre

decrement

Unary plus / minus

Unary Logical negation /

bitwise complement

Unary cast

Address

Determine Size in bytes

Right to left 2

Binary

* / %
Multiplication / Division/

Modules
Left to right 3

+ -
Addition / Subtraction

Left to right 4

<< >>
Bitwise shift left, bitwise

shift right
Left to right 5

< <=

> >=

Relational less than / less

than or equal to

Relational greater than /

greater than or equal to

Left to right 6

= = !=
Relational is equal to / is

not equal to
Left to right 7

& Bitwise AND Left to right 8

^ Bitwise XOR Left to right 9

|
Bitwise OR

Left to right 10

&&
Logical AND

Left to right 11

||
Logical OR

Left to right 12

Ternary ? :

Ternary (Conditional)

Right to left 13

Abacus Polytechnic College Haripur, WWW.ABACUS.EDU.PK

Page | 15 WWW.ABACUS.EDU.PK, PH: 0995-611328, cell: 0331-6611328

Assignment

=

+= -=

*= /=

%= &=

^= !=

<<= >>=

Assignment

Addition/Subtraction

Assignment

Multiplication/Division

Assignment

Modulus/bitwise AND

assignment

Bitwise exclusive/inclusive

OR assignment

Bitwise Shift left/right

assignment

Right to left 14

Comma ,

Comma (separate

Expression) Left to right 15

INPUT & OUTPUT STATEMENTS

Reading data, processing it and writing the processed data known as information or a result

of a program are the essential functions of a program. The C is a functional language. It

provides a number of macros and functions to enable the programmer to effectively carry out

these input and output operations. Some of the input/output functions / macros in C are

1. getchar() 2. putchar()

3. scanf() 4. printf()

5. gets() 6. puts()

The data entered by the user through the standard input device and processed data is

displayed on the standard output device.

I/O Functions:

I / O functions are grouped into two categories.

 Unformatted I/O functions

 Formatted I/O function.

The Formatted I/O functions allows programmers to specify the type of data and the way in

which it should be read in or written out. On the other hand, unformatted I/O functions do not

specify the type of data and the way is should be read or written. Amongst the above

specified I/O functions scanf() and printf() are formatted I/O functions.

Function Formatted Unformatted

Input scanf() getchar(),gets()

Output printf() putchar(),puts()

Formatted Output – The printf function

Abacus Polytechnic College Haripur, WWW.ABACUS.EDU.PK

Page | 16 WWW.ABACUS.EDU.PK, PH: 0995-611328, cell: 0331-6611328

C provides the printf function to display the data on the monitor. This function can be used to

display any combination of numerical values, single characters and strings. The general form

of printf statement

 Function name

 Function arguments

printf(“my roll number is %d. \n”, rollno)

 control string print list

The %d is known as a placeholder or conversion character or format code or format specifier.

At the time of display the value of the specified variable is substituted at the place of

placeholder. In out example, value of rollno is substituted in place of %d. The printf uses

different placeholders to display different type of data items.

Format Specifieres

Placeholder Type of Data Item displayed

%c Single character

%d Signed decimal integer

%e Floating point number with an exponent

%f Floating point number without an exponent

%g Floating point number either with exponent or without exponent

depending on value. Trailing zeros and trailing decimal point

will not be displayed.

%i Singed decimal number

%o Octal number, without leading zero

%s String

%u Unsigned decimal integer

%x Hexadecimal number, without leading zero

Loops

Looping is a way by which we can execute any some set of statements more than one times

continuously .In c there are mainly three types of loops are use :

 while Loop

 do while Loop

Abacus Polytechnic College Haripur, WWW.ABACUS.EDU.PK

Page | 17 WWW.ABACUS.EDU.PK, PH: 0995-611328, cell: 0331-6611328

 For Loop

While Loop

Loops generally consist of two parts: one or more control expressions which (not

surprisingly) control the execution of the loop, and the body, which is the statement or set of

statements which is executed over and over.

The general syntax of a while loop is

 Initialization

 while(expression)

{

 Statement1

 Statement2

 Statement3

}

The most basic loop in C is the while loop. A while loop has one control expression, and

executes as long as that expression is true. This example repeatedly doubles the number 2 (2,

4, 8, 16, ...) and prints the resulting numbers as long as they are less than 1000:

 int x = 2;

 while(x < 1000)

 {

 printf("%d\n", x);

 x = x * 2;

 }

(Once again, we've used braces {} to enclose the group of statements which are to be

executed together as the body of the loop.)

For Loop

Our second loop, which we've seen at least one example of already, is the for loop. The

general syntax of a while loop is

 for(Initialization;expression;Increments/decrements)

{

 Statement1

 Statement2

Abacus Polytechnic College Haripur, WWW.ABACUS.EDU.PK

Page | 18 WWW.ABACUS.EDU.PK, PH: 0995-611328, cell: 0331-6611328

 Statement3

}

The first one we saw was:

 for (i = 0; i < 10; i = i + 1)

 printf ("i is %d\n", i);

 (Here we see that the for loop has three control expressions. As always, the statement can

be a brace-enclosed block.)

Do while Loop

This is very similar to the while loop except that the test occurs at the end of the loop body.

This guarantees that the loop is executed at least once before continuing. Such a setup is

frequently used where data is to be read. The test then verifies the data, and loops back to

read again if it was unacceptable.

do

{

 printf("Enter 1 for yes, 0 for no :");

 scanf("%d", &input_value);

} while (input_value != 1 && input_value != 0)

Abacus Polytechnic College Haripur, WWW.ABACUS.EDU.PK

Page | 19 WWW.ABACUS.EDU.PK, PH: 0995-611328, cell: 0331-6611328

The break Statement

We have already met break in the discussion of the switch statement. It is used to exit from a

loop or a switch, control passing to the first statement beyond the loop or a switch.

With loops, break can be used to force an early exit from the loop, or to implement a loop

with a test to exit in the middle of the loop body. A break within a loop should always be

protected within an if statement which provides the test to control the exit condition.

The continue Statement

This is similar to break but is encountered less frequently. It only works within loops where

its effect is to force an immediate jump to the loop control statement.

 In a while loop, jump to the test statement.

 In a do while loop, jump to the test statement.

 In a for loop, jump to the test, and perform the iteration.

Like a break, continue should be protected by an if statement. You are unlikely to use it

very often.

Abacus Polytechnic College Haripur, WWW.ABACUS.EDU.PK

Page | 20 WWW.ABACUS.EDU.PK, PH: 0995-611328, cell: 0331-6611328

Take the following example:

int i;

for (i=0;i<10;i++)

{

if (i==5)

continue;

printf("%d",i);

if (i==8)

break;

}

This code will print 1 to 8 except 5.

Continue means, whatever code that follows the continue statement WITHIN the loop code

block will not be exectued and the program will go to the next iteration, in this case, when

the program reaches i=5 it checks the condition in the if statement and executes 'continue',

everything after continue, which are the printf statement, the next if statement, will not be

executed.

Break statement will just stop execution of the look and go to the next statement after the

loop if any. In this case when i=8 the program will jump out of the loop. Meaning, it wont

continue till i=9, 10.

Comments:

o The compiler is "line oriented", and parses your program in a line-by-line

fashion.

o There are two kinds of comments: single-line and multi-line comments.

o The single-line comment is indicated by "//"

This means everything after the first occurrence of "//", UP TO THE END OF

CURRENT LINE, is ignored.

o The multi-line comment is indicated by the pair "/*" and "*/".

This means that everything between these two sequences will be ignored. This

may ignore any number of lines.

Here is a variant of our first program:

/* This is a variant of my first program.

* It is not much, I admit.

*/

int main() {

printf("Hello World!\n"); // that is all?

return(0);

}

Abacus Polytechnic College Haripur, WWW.ABACUS.EDU.PK

Page | 21 WWW.ABACUS.EDU.PK, PH: 0995-611328, cell: 0331-6611328

Conditions in C Language:

In programming we use conditions to make and check logic in programming, there are 3

types of conditions in C and C++.

1. If

2. If else

3. Switch

The if statement in C Programming Language

 Here, if is the keyword in C.

 Syntax:

 if (condition is true){

 /*block of statements to be executed*/

 }

 The keyword if tells the compiler that what follows is decision control statement. The block

of statements to be executed must be enclosed in opening and closing braces. If only one

statement needs to be executed then braces need not be used. Let us understand if statement

using an example.

Example:

 int a = 10;

 if (a == 10){

 printf(“You are in if block\n”);

 printf(“The value of a is %d\n”, a);

 }

 printf(“You are out of if block”);

 In the above example we have assigned value 10 to a. In the next line, there is an if

statement. It is read as “If a is equal to 10 then perform the block of statements enclosed

within the braces”. After the execution of this block normal sequence flow of the program is

executed.

 The output of the above example is:

 You are in if block

 The value of a is 10

 You are out of if block

 Lets have a look at different expressions that can be used in if statement.

 a == b read as a is equal to b

 a!=b read as a is not equal to b

 a < b read as a is less than b a > b read as a is greater than b

Abacus Polytechnic College Haripur, WWW.ABACUS.EDU.PK

Page | 22 WWW.ABACUS.EDU.PK, PH: 0995-611328, cell: 0331-6611328

 a<=b read as a is less than or equal to b a>=b read as a is greater than or equal to b

Example:

 /*Demonstration of if statement*/

 int marks;

 printf(“Enter the marks:”);

 scanf(“%d”, &marks);

 if(marks>=35){

 printf(“Congrats!!!”);

 }

 In the above program, it will prompt you to enter the marks. If you enter marks greater than

or equal to 35, it will display Congrats!!! on the screen else it will do nothing.

The if-else Statement in C Programming Language

 Here, if and else are the keywords in C.

 Syntax:

 if (condition is true){

 /*1st block of statements*/

 }

 else{

 /*2nd block of statements*/

 }

 The keyword if tells the compiler that what follows is decision control statement. The block

of statements to be executed must be enclosed in opening and closing braces. If only one

statement needs to be executed then braces need not be used. Let us understand if-else

statement using an example.

Example:

 int a = 10;

 if (a == 10){

 printf(“You are in 1st block\n”);

 printf(“The value of a is %d\n”, a);

 }

 else{

 printf(“You are in 2nd block\n”);

 printf(“The value of a is not equal to %d\n”, a);

 }

 In the above example we have assigned value 10 to a. In the next line, there is an if

statement. It is read as “If a is equal to 10 then perform the block of statements enclosed

within the braces of if part else perform the block of statements enclosed within the braces of

else part”. After the execution of if-else statement normal sequence flow of the program is

followed.

 The output of the above example is:

 You are in if block

Abacus Polytechnic College Haripur, WWW.ABACUS.EDU.PK

Page | 23 WWW.ABACUS.EDU.PK, PH: 0995-611328, cell: 0331-6611328

 You are in 1st block

 The value of a is 10

The else-if statement

 The else-if statement is nothing but the rearrangement of else with the if that follows.

 Consider the below program.

 if(condition)

 perform this

 else{

 if(condition)

 perform this;

 }

 The above program can be re-written as,

 if(condition)

 perform this

 else if(condition)

 perform this;

 Here, the else-if statement is used. Else if reduces the complexity of the program making it

easier to understand.

The else-if statement is is used when ever we have multiple if conditions.

e.g.

if (condition 1)

{

do this;

}

else if (condition 2)

{

do this;

}

else if(condition 3)

{

do this;

}

else

{

do this;

}

The switch Statement in C Language

Abacus Polytechnic College Haripur, WWW.ABACUS.EDU.PK

Page | 24 WWW.ABACUS.EDU.PK, PH: 0995-611328, cell: 0331-6611328

 The switch statement is very powerful decision making statement. It reduces the complexity

of the program. Hence increases the readability of the program. Switch statement accepts

single input from the user and based on that input executes a particular block of statements.

Syntax of switch statement:

switch(expression)

{

 case constant 1:

 perform this;

 case constant 2:

 perform this;

 case constant 3:

 perform this;

 case constant 4:

 perform this;

 .

 .

 .

 default:

 perform this;

 }

Control passes to the statement whose case constant-expression matches the value of switch (

expression). The switch statement can include any number of case instances, but no two case

constants within the same switch statement can have the same value. Execution of the

statement body begins at the selected statement and proceeds until the end of the body or

until a break statement transfers control out of the body. Please make a note that using

default case is optional.

Example 1:

 int a = 2;

 switch(a)

{

 case 1:

 printf(“1”);

case 2:

 printf(“2”);

}

Output:

 2

Example 2:

 int a = 2;

 switch(a)

{

Abacus Polytechnic College Haripur, WWW.ABACUS.EDU.PK

Page | 25 WWW.ABACUS.EDU.PK, PH: 0995-611328, cell: 0331-6611328

 case 1:

 printf(“1\n”);

 break;

 case 2:

 printf(“2\n”);

 break;

 default:

 printf(“No match”)

 }

 Output:

 2

Example 3:

 char a = „A‟;

 switch(a){

 case „B‟:

 printf(“B\n”);

 break;

 case „A‟:

 printf(“A\n”);

 break;

 default:

 printf(“No match”)

 }

 Output:

 A

Use of GOTO keyword

The goto statement is used for unconditional jump from one part of the program to another

part of the program. It is always suggested not to use goto statement as this reduces the

readability of the program. Using goto statement is considered as poor programming

approach.

 The goto statement consists of two parts: label and goto keyword.

Example:

 /*use of goto statement*/

 #include<stdio.h>

 #include<conio.h>

 void main(){

Abacus Polytechnic College Haripur, WWW.ABACUS.EDU.PK

Page | 26 WWW.ABACUS.EDU.PK, PH: 0995-611328, cell: 0331-6611328

 int a;

 goto label;

 a = 10;

 printf(“%d”, a);

 label:

 a = 20;

 printf(“%d”, a);

 }

 Output:

 20

Abacus Polytechnic College Haripur, WWW.ABACUS.EDU.PK

Page | 27 WWW.ABACUS.EDU.PK, PH: 0995-611328, cell: 0331-6611328

Functions:

In structural programming, the program is divided into small independent tasks. These tasks

are small enough to be understood easily without having to understand the entire program at

once. Each task is designed to perform specific functionality on its own. When these tasks

are performed, their outcomes are combined together to solve the problem. Such a structural

programming can be implemented using modular programming. In modular programming,

the program is divided into separate small programs called modules. Each module is

designed to perform specific function. Modules make out actual program shorter, hence

easier to read and understand. A defined function or set of similar functions is coded in a

separate module or sub module, which means that code can be loaded into memory more

efficiently and that modules can be reused in other programs. After a module has been tested

individually, it is then integrated with other modules into the overall program structure.

There are several advantages of modular / structural programming, some of them are

Reusability: Many programs require that a particular group of instructions accessed

repeatedly, from several different places within the program. The repeated instructions can be

placed within a single function, which can then be accessed wherever it is needed. This

avoids rewriting of group of instructions on every access.

Easy Debugging: Since each function is smaller and has a logical clarity, it is easy to

locate and correct errors in it.

Build Library: The use of functions allows a programmer to build a customized library of

frequently used routines or system-dependent features. Each routine can programmed as a

separate function and stored within a special library file. Building libraries reduce the time

and space complexity and promote the portability.

Basics of Functions

A function by definition, is a procedure or routine. In other words, it‟s a self-contained block

of code that executes a certain task. Although some languages do distinguish between

procedure and function, whereas a function returns a value of some kind and a procedure

does not, C combines both functionalities into its definition. In order to use function in the

program we need to establish 3 elements that are related to the function.

 Function Declaration: All identifiers in C need to be declared before they are used.

This is true for functions as well as variables. For functions the declarations needs to

be before the first call of the function.

 Function Definition: It is actual code for the function to perform the specific task.

 Function Call: In order to use function in the program we use function call to access

the function. The program or function that calls the function is referred to as calling

program or calling function.

Ex:

Abacus Polytechnic College Haripur, WWW.ABACUS.EDU.PK

Page | 28 WWW.ABACUS.EDU.PK, PH: 0995-611328, cell: 0331-6611328

#include <stdio.h>

print_msg(); /* The function Declaration */

void main() /* the main function */

{

print_msg(); /* The function call */

}

print_msg() /* the function definition */

{

printf(“this is a module called print_msg \n”);

}

Abacus Polytechnic College Haripur, WWW.ABACUS.EDU.PK

Page | 29 WWW.ABACUS.EDU.PK, PH: 0995-611328, cell: 0331-6611328

Math Library Functions

Abacus Polytechnic College Haripur, WWW.ABACUS.EDU.PK

Page | 30 WWW.ABACUS.EDU.PK, PH: 0995-611328, cell: 0331-6611328

Programming Examples:

1. The LeVan Car Rental company charges $0.25/mile if the total mileage does not exceed

100. If the total mileage is over 100, the company charges $0.25/mile for the first 100 miles,

then it charges $0.15/mile for any additional mileage over 100.

Write a program so that if the clerk enters the number of miles, the program would display

the total price owed.

Source File

#include <iostream>

using namespace std;

void main()

{

 unsigned int Miles;

 const double LessThan100 = 0.25;

 const double MoreThan100 = 0.15;

 double PriceLessThan100, PriceMoreThan100, TotalPrice;

 cout << "Enter the number of miles: ";

 cin >> Miles;

 if(Miles <= 100)

 {

 PriceLessThan100 = Miles * LessThan100;

 PriceMoreThan100 = 0;

 }

 else

 {

 PriceLessThan100 = 100 * LessThan100;

 PriceMoreThan100 = (Miles - 100) * MoreThan100;

 }

 TotalPrice = PriceLessThan100 + PriceMoreThan100;

 cout << "\nTotal Price = $" << TotalPrice << "\n\n";

}

 Here is an example of running the program:

 Enter the number of miles: 75

 Total Price = $18.75

// - Show all odd numbers using a for loop

#include <iostream>

using namespace std;

int main()

{

 for (int count = 1; count <= 41; count += 2)

 {

 cout << count << ", ";

 }

 cout << endl;

 return 0;

Abacus Polytechnic College Haripur, WWW.ABACUS.EDU.PK

Page | 31 WWW.ABACUS.EDU.PK, PH: 0995-611328, cell: 0331-6611328

}

/*==================[output]===

========

1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41,

Press any key to continue . . .

// - Count backwards using a for loop.

#include <iostream>

using namespace std;

int main()

{

 for (int count = 15; count > -1; count--)

 {

 cout << count << ", ";

 }

 cout << endl;

 return 0;

}

/*=================[output]==========================

15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0,

Press any key to continue . . .

===*/

// - Count by fives using a for loop.

#include <iostream>

using namespace std;

int main()

{

 for (int count = 0; count <= 100; count += 5)

 {

 cout << count << ", ";

 }

 cout << endl;

 return 0;

}

/*=====================[output]======================================

==

0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100,

Press any key to continue . . .

// While loop in C++ with output show below.

#include <iostream>

using namespace std;

Abacus Polytechnic College Haripur, WWW.ABACUS.EDU.PK

Page | 32 WWW.ABACUS.EDU.PK, PH: 0995-611328, cell: 0331-6611328

int main()

{

 int num = 1; // num variable controls the count from 1.

 // initialize counter starting at 1.

 while (num <= 7) // Loop - number controls how many times.

 {

 cout << num; // Show the number each time.

 num++; // Add 1 to the variable num.

 cout << " - Hello world!\n";

 }

 cout << "\n";

 return 0;

}

/* ====================== output ============================

1 - Hello world!

2 - Hello world!

3 - Hello world!

4 - Hello world!

5 - Hello world!

6 - Hello world!

7 - Hello world!

*/// ==

Abacus Polytechnic College Haripur, WWW.ABACUS.EDU.PK

Page | 33 WWW.ABACUS.EDU.PK, PH: 0995-611328, cell: 0331-6611328

SUM of series

#include<stdio.h>

int main()

{

 int n, sum,i,j;

 printf("Please enter an integer, n = ");

 scanf("%d", &n);

 for(i=1;i<=n;i++)

 for(j=1;j<=i;j++)

 sum = sum + n;

 printf("sum = %d", sum);

 return 0;

}

Factorial of a given number

Hey the program is as follows

 #include<iostream.h>

 void maun()

 {

 int fact=1,i,n;

 cout<<"enter the number ";

 cin>>"n;

 for(i=1;i<=n;i++)

 {

 fact=fact*i;

 }

 cout<<"the fact is "<<fact;

 }

To check whether number is prime or not

#include<stdio.h>

 main()

 {

 int n, c = 2;

 printf("Enter a number to check if it is prime\n");

Abacus Polytechnic College Haripur, WWW.ABACUS.EDU.PK

Page | 34 WWW.ABACUS.EDU.PK, PH: 0995-611328, cell: 0331-6611328

 scanf("%d",&n);

 for (c = 2 ; c <= n - 1 ; c++)

 {

 if (n%c == 0)

 {

 printf("%d is not prime.\n", n);

 break;

 }

 }

 if (c == n)

 printf("%d is prime.\n", n);

 return 0;

 }

Swapping two numbers

#include <stdio.h>

 int main()

 {

 int x, y, temp;

 printf("Enter the value of x and y\n");

 scanf("%d%d", &x, &y);

 printf("Before Swapping\nx = %d\ny = %d\n",x,y);

 temp = x;

 x = y;

 y = temp;

 printf("After Swapping\nx = %d\ny = %d\n",x,y);

 return 0;

 }

Leap Year Program

#include <stdio.h>

 int main()

 {

 int year;

 printf("Enter a year to check if it is a leap year\n");

Abacus Polytechnic College Haripur, WWW.ABACUS.EDU.PK

Page | 35 WWW.ABACUS.EDU.PK, PH: 0995-611328, cell: 0331-6611328

 scanf("%d", &year);

 if (year%400 == 0)

 printf("%d is a leap year.\n", year);

 else if (year%100 == 0)

 printf("%d is not a leap year.\n", year);

 else if (year%4 == 0)

 printf("%d is a leap year.\n", year);

 else

 printf("%d is not a leap year.\n", year);

 return 0;

 }

Program to check that character is vowel or not

#include <stdio.h>

 main()

 {

 char ch;

 printf("Enter a character\n");

 scanf("%c", &ch);

 switch(ch)

 {

 case 'a':

 case 'A':

 case 'e':

 case 'E':

 case 'i':

 case 'I':

 case 'o':

 case 'O':

 case 'u':

 case 'U':

 printf("%c is a vowel.\n", ch);

 break;

 default:

 printf("%c is not a vowel.\n", ch);

 }

 return 0;

 }

Abacus Polytechnic College Haripur, WWW.ABACUS.EDU.PK

Page | 36 WWW.ABACUS.EDU.PK, PH: 0995-611328, cell: 0331-6611328

C program to perform addition, subtraction,

multiplication and division

#include <stdio.h>

 int main()

 {

 int first, second, add, subtract, multiply;

 float divide;

 printf("Enter two integers\n");

 scanf("%d%d", &first, &second);

 add = first + second;

 subtract = first - second;

 multiply = first * second;

 divide = first / (float)second; //typecasting

 printf("Sum = %d\n",add);

 printf("Difference = %d\n",subtract);

 printf("Multiplication = %d\n",multiply);

 printf("Division = %.2f\n",divide);

 return 0;

 }

//program to shutdown a system

#include <stdio.h>

#include <stdlib.h>

 main()

 {

 char ch;

 printf("Do you want to shutdown your computer now (y/n)\n");

 scanf("%c",&ch);

 if (ch == 'y' || ch == 'Y')

 system("C:\\WINDOWS\\System32\\shutdown -s");

 return 0;

 }

